Final Project

#computation imports
import xarray as Xxr
import numpy as np

#visualization imports

import matplotlib.pyplot as plt

from matplotlib.gridspec import GridSpec
import ipywidgets as widgets

import cartopy.crs as ccrs

$matplotlib inline

#stop complaining
import warnings
warnings.filterwarnings('ignore')

Open Raw Data

ssh = xr.open mfdataset('~/Desktop/FALL 2023/Honors Thesis/data/ssh/SEA SURFACE HEIGHT mon mean_ *')

ssh['SSH'].isel(time = 0).plot()

<matplotlib.collections.QuadMesh at 0x7fdb96a8eeel>

time = 1992-01-16T18:00:00

80 1 15
60 - \‘f

@ 10 £
2 =]
5_ 7 2
W e -
=€ 20- 1. - 05 &z
v 2 R =iy
2w 0 '(’ L 00 77w
o 8 = m e
© 5 50 { P TN n 2
v v hq‘ -—-05 Y m
o B F 3
£ 404 s
o -10 3

-60 e

-80 =15

-150 -100 =50 0 50 100 150
longitude at grid cell center
[degrees_east]

Trim Spatial Scope to North Atlantic
def spatial trim(ds, extent = [0.,80.,-85.,20.]):

ds trim = ds.sel(latitude = slice(str(extent[0]), str(extent[l]))).sel(longitude = slice(str(extent[2]),str(extent([3])))

return ds trim

ssh atl = spatial trim(ssh)

ssh atl['SSH'].isel(time = 0).plot()

<matplotlib.collections.QuadMesh at 0x7£db50032250>

time = 1992-01-16T18:00:00

80

70 - 0.75
T 60 050 ©
o L))
U _ =
—_— = J n U —
st 50 0.25 §§

c
T | =
2 n'40 - L 000 a5
ow B E
o D 30 - L 025 L5
R £
-~)
5 20- -0.50 €
" :
- -0.75
0] T L T L
-100 -80 -60 -40 -20 0 20

longitude at grid cell center
[degrees_east]

Detrend Spatial Data with Respect to Time

def detrend linear2(da, dim):
""" linear detrend DataArray along the axis dim
params = da.polyfit(dim=dim, deg=1)
fit = xr.polyval(da[dim], params.polyfit coefficients)
da = da-fit
return da, params.polyfit coefficients[0,:,:]

det, params = detrend linear2(ssh atl['SSH'], 'time')
Prep Data for SVD

ssh ad = det.groupby('time.year').mean('time')

y = ssh ad.stack(ll=("latitude","longitude"))

W = np.nan_to num(y)

Do SVD

U, s, Vt = np.linalg.svd(w, full matrices = False)

Convert SVD output to Xarray DataSet for Plotting

maps = Vt.reshape(26,160,240)
index = np.where(maps == 0.0)
maps[index] = np.nan

#reshape stacked lat and lon to mappable format
#find places where spatial value is zero
#replace these places with nan to make continents white

#setting up coordinates for dataset

lat = ssh _ad['latitude']
lon_ = ssh_ad['longitude']
comp = np.arange(0,26)
y = ssh ad['year']
EOF = xr.Dataset(
data vars=dict(
spatial = (['nth comp', 'lat', 'lon'], maps),
temporal = (['year', 'nth comp'], U),
sv = (['nth comp'], s),

) s

coords=dict (
nth comp =
lat = lat .values,
lon = lon_ .values,
year =y,

comp,

) s
attrs=dict(description='EOF ATL'),

Reconstructing origional map from SVD

total = 0
for i in range(0,26):
total += EOF['spatial'].isel(nth comp =

i) * EOF['sv'].isel(nth comp = i) * EOF['temporal'].isel(nth comp = i)

Plotting Routine

#interactive plotting
def update plot(time, n, intensity):

a = n[0] #a is the first svd plotted, updated by slider output
z = n[l] #z is the last SVD component plotted, updated by slider output
"time'’

i time = time #i time is the time step to be plotted, updated by time slider output

#initializing sum of SVD componets (ssum = tsum =
nth ssum = 0
nth tsum = 0

spatial, temporal)

#generating map of cumulative SVD components
for i in range(a,z+l):
nth ssum += EOF['spatial'].isel(nth comp =
nth tsum += EOF['sv'].isel(nth comp =

i) * EOF['sv'].isel(nth comp =
i) * EOF['temporal'].isel(nth comp =

i) * EOF['temporal'].isel(nth comp =
i)

i)

#initalize figure
fig = plt.figure(figsize = [8.5,3.5], dpi =
fig.suptitle('SSH SVD Components')

200)

#set up coastline projection
usemap proj = ccrs.PlateCarree()

#set layout

gs = GridSpec(2, 3, width ratios=[3.25, 1, 1], height ratios = [3,1.25])

axl = fig.add subplot(gs[0:,0], projection=usemap proj) #all rows but only first column for first subplot (large map)
ax2 = fig.add subplot(gs[0, 1], projection=usemap proj) #2nd column, 1st row

ax3 = fig.add subplot(gs[0, 2], projection=usemap proj) #3rd column, 1st row

ax4 = fig.add subplot(gs[1l, 1:]) #2rd row, 2-3 columns

fig.tight layout(h pad = 3, w pad = 3) #spacing between subplots

#large subplot

cont = axl.contourf(np.linspace(-99.75, 19.75, 240),np.linspace(0.25, 79.75, 160), nth ssum.sel(year = i time), levels = 50, cmap = 'RdBu', vmin = -0.1 * (100./intensity),
axl.set extent([-99.75, 19.75, 0.25, 79.75], crs = usemap proj)
axl.set xticks(ticks [-100, -60, =20, 201])

axl.set xticklabels(labels = [-100, -60, -20, 20], fontsize = 6)
axl.set xlabel('longitude', fontsize = 6)

axl.set yticks(ticks [0, 40, 80])

axl.set yticklabels(labels = [0, 40, 80], fontsize = 6)

axl.set ylabel('latitude', fontsize = 6)

axl.coastlines(linewidth = 0.3)

axl.set title(str(a) + ' - ' + str(z) + ' PC Components')

#small subplot (total SVD components)

tot = ax2.contourf(np.linspace(-99.75, 19.75, 240),np.linspace(0.25, 79.75, 160), total.sel(year = i _time), levels = 50, cmap = 'RdBu', vmin = -0.1, vmax = 0.1)
ax2.set xticks(ticks = [-100, -60, -20, 20])

ax2.set xticklabels(labels = [-100, -60, -20, 20], fontsize = 6)
ax2.set xlabel('longitude', fontsize = 6)

ax2.set yticks(ticks = [0, 40, 80])

ax2.set yticklabels(labels = [0, 40, 80], fontsize = 6)

ax2.set ylabel('latitude', fontsize = 6)

ax2.set _title('Total')

ax2.coastlines(linewidth = 0.1)

#small subplot (residual (All SVD - selected SVD))

ax3.contourf (np.linspace(-99.75, 19.75, 240),np.linspace(0.25, 79.75, 160), total.sel(year = i time) - nth ssum.sel(year = i time), levels = 50, cmap = 'RdBu’',vmin = -0.1, Vv
ax3.set title('Residual')

ax3.set xticks(ticks = [-100, -60, -20, 20])

ax3.set xticklabels(labels = [-100, -60, -20, 20], fontsize = 6)
ax3.set xlabel('longitude', fontsize = 6)

ax3.set yticks(ticks = [0, 40, 80])

ax3.set yticklabels(labels = [0, 40, 80], fontsize = 6)

ax3.set ylabel('latitude', fontsize = 6)

ax3.coastlines(linewidth = 0.1)

#time series subplot

ax4.plot (EOF.year, nth tsum, color = '#398CBF')

ax4.plot (EOF.year.sel(year = i time), nth tsum.sel(year = i time), 'o', color = '#BF3F3F')
ax4.grid(axis = 'y', alpha = 0.3)

ax4.set yticks(ticks = [-4, 0, 4])

ax4.set yticklabels(labels = [-4, 0, 4], fontsize = 6)

ax4.set xticks(ticks = [1992, 2000, 2008, 2018])

ax4.set xticklabels(labels = [1992, 2000, 2008, 2018], fontsize = 6)
ax4.set xlabel('year', fontsize = 6)

ax4.set title('time series')

#main colorbar

cbar = fig.colorbar(cont, ax=axl, aspect = 20, shrink = 0.9)
cbar.ax.tick params(labelsize = 4)

cbar.set label('ssh (m)', fontsize = 6)

#total & residual color bar

cbar2 = fig.colorbar(tot, ax = [ax2, ax3],location = 'bottom', orientation = 'horizontal', aspect = 30, pad = 0.2)
cbar2.ax.tick params(labelsize = 4)
cbar2.set label(label = 'ssh (m)', size = 6)
#interactive part
w = widgets.interact(
update plot, #call update plot function
time = widgets.IntSlider(min = 1992, max = 2017, step = 1, value = 1992, description = 'Year'), #seting time slider
intensity = widgets.IntSlider(min = 100, max = 400, step = 10, value = 100, description = 'Intensity %'),
n = widgets.IntRangeSlider(min = 0, max = 24, step = 1, value = [0,1], description = 'PC Range'), #setting nth SVD component slider

single = widgets.Checkbox(value = False, description = 'single PC'), #setting sinlge check box

)

interactive(children=(IntSlider(value=1992, description='Year', max=2017, min=1992), IntRangeSlider(value=(0,

