
Final Project

Open Raw Data

<matplotlib.collections.QuadMesh at 0x7fdb96a8eee0>

Trim Spatial Scope to North Atlantic

<matplotlib.collections.QuadMesh at 0x7fdb50032250>

Detrend Spatial Data with Respect to Time

Prep Data for SVD

Do SVD

Convert SVD output to Xarray DataSet for Plotting

Reconstructing origional map from SVD

Plotting Routine

interactive(children=(IntSlider(value=1992, description='Year', max=2017, min=1992), IntRangeSlider(value=(0, …

In [16]: #computation imports
import xarray as xr
import numpy as np

#visualization imports
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
import ipywidgets as widgets
import cartopy.crs as ccrs
%matplotlib inline

#stop complaining
import warnings
warnings.filterwarnings('ignore')

In [2]: ssh = xr.open_mfdataset('~/Desktop/FALL 2023/Honors Thesis/data/ssh/SEA_SURFACE_HEIGHT_mon_mean_*')

In [3]: ssh['SSH'].isel(time = 0).plot()

Out[3]:

In [4]: def spatial_trim(ds, extent = [0.,80.,-85.,20.]):

 ds_trim = ds.sel(latitude = slice(str(extent[0]), str(extent[1]))).sel(longitude = slice(str(extent[2]),str(extent[3])))

 return ds_trim

In [5]: ssh_atl = spatial_trim(ssh)

In [6]: ssh_atl['SSH'].isel(time = 0).plot()

Out[6]:

In [7]: def detrend_linear2(da, dim):
 """ linear detrend DataArray along the axis dim """
 params = da.polyfit(dim=dim, deg=1)
 fit = xr.polyval(da[dim], params.polyfit_coefficients)
 da = da-fit
 return da, params.polyfit_coefficients[0,:,:]

In [8]: det, params = detrend_linear2(ssh_atl['SSH'], 'time')

In [9]: ssh_ad = det.groupby('time.year').mean('time')

In [10]: y = ssh_ad.stack(ll=("latitude","longitude"))
w = np.nan_to_num(y)

In [11]: U, s, Vt = np.linalg.svd(w, full_matrices = False)

In [12]: maps = Vt.reshape(26,160,240) #reshape stacked lat and lon to mappable format
index = np.where(maps == 0.0) #find places where spatial value is zero
maps[index] = np.nan #replace these places with nan to make continents white

#setting up coordinates for dataset
lat_ = ssh_ad['latitude']
lon_ = ssh_ad['longitude']
comp = np.arange(0,26)
y = ssh_ad['year']

In [13]: EOF = xr.Dataset(
 data_vars=dict(
 spatial = (['nth_comp', 'lat', 'lon'], maps),
 temporal = (['year','nth_comp'], U),
 sv = (['nth_comp'], s),
),
 coords=dict(
 nth_comp = comp,
 lat = lat_.values,
 lon = lon_.values,
 year = y,
),
 attrs=dict(description='EOF ATL'),
)

In [14]: total = 0
for i in range(0,26):
 total += EOF['spatial'].isel(nth_comp = i) * EOF['sv'].isel(nth_comp = i) * EOF['temporal'].isel(nth_comp = i)

In [15]: #interactive plotting

def update_plot(time, n, intensity):

 a = n[0] #a is the first svd plotted, updated by slider output
 z = n[1] #z is the last SVD component plotted, updated by slider output

 i_time = time #i_time is the time step to be plotted, updated by time slider output 'time'

 #initializing sum of SVD componets (ssum = spatial, tsum = temporal)
 nth_ssum = 0
 nth_tsum = 0

 #generating map of cumulative SVD components
 for i in range(a,z+1):
 nth_ssum += EOF['spatial'].isel(nth_comp = i) * EOF['sv'].isel(nth_comp = i) * EOF['temporal'].isel(nth_comp = i)
 nth_tsum += EOF['sv'].isel(nth_comp = i) * EOF['temporal'].isel(nth_comp = i)

 #initalize figure
 fig = plt.figure(figsize = [8.5,3.5], dpi = 200)
 fig.suptitle('SSH SVD Components')

 #set up coastline projection
 usemap_proj = ccrs.PlateCarree()

 #set layout
 gs = GridSpec(2, 3, width_ratios=[3.25, 1, 1], height_ratios = [3,1.25])
 ax1 = fig.add_subplot(gs[0:,0], projection=usemap_proj) #all rows but only first column for first subplot (large map)
 ax2 = fig.add_subplot(gs[0, 1], projection=usemap_proj) #2nd column, 1st row
 ax3 = fig.add_subplot(gs[0, 2], projection=usemap_proj) #3rd column, 1st row
 ax4 = fig.add_subplot(gs[1, 1:]) #2rd row, 2-3 columns

 fig.tight_layout(h_pad = 3, w_pad = 3) #spacing between subplots

 #large subplot
 cont = ax1.contourf(np.linspace(-99.75, 19.75, 240),np.linspace(0.25, 79.75, 160), nth_ssum.sel(year = i_time), levels = 50, cmap = 'RdBu', vmin = -0.1 * (100./intensity),
 ax1.set_extent([-99.75, 19.75, 0.25, 79.75], crs = usemap_proj)
 ax1.set_xticks(ticks = [-100, -60, -20, 20])
 ax1.set_xticklabels(labels = [-100, -60, -20, 20], fontsize = 6)
 ax1.set_xlabel('longitude', fontsize = 6)
 ax1.set_yticks(ticks = [0, 40, 80])
 ax1.set_yticklabels(labels = [0, 40, 80], fontsize = 6)
 ax1.set_ylabel('latitude', fontsize = 6)
 ax1.coastlines(linewidth = 0.3)
 ax1.set_title(str(a) + ' - ' + str(z) + ' PC Components')

 #small subplot (total SVD components)
 tot = ax2.contourf(np.linspace(-99.75, 19.75, 240),np.linspace(0.25, 79.75, 160), total.sel(year = i_time), levels = 50, cmap = 'RdBu', vmin = -0.1, vmax = 0.1)
 ax2.set_xticks(ticks = [-100, -60, -20, 20])
 ax2.set_xticklabels(labels = [-100, -60, -20, 20], fontsize = 6)
 ax2.set_xlabel('longitude', fontsize = 6)
 ax2.set_yticks(ticks = [0, 40, 80])
 ax2.set_yticklabels(labels = [0, 40, 80], fontsize = 6)
 ax2.set_ylabel('latitude', fontsize = 6)
 ax2.set_title('Total')
 ax2.coastlines(linewidth = 0.1)

 #small subplot (residual (All SVD - selected SVD))
 ax3.contourf(np.linspace(-99.75, 19.75, 240),np.linspace(0.25, 79.75, 160), total.sel(year = i_time) - nth_ssum.sel(year = i_time), levels = 50, cmap = 'RdBu',vmin = -0.1, vmax
 ax3.set_title('Residual')
 ax3.set_xticks(ticks = [-100, -60, -20, 20])
 ax3.set_xticklabels(labels = [-100, -60, -20, 20], fontsize = 6)
 ax3.set_xlabel('longitude', fontsize = 6)
 ax3.set_yticks(ticks = [0, 40, 80])
 ax3.set_yticklabels(labels = [0, 40, 80], fontsize = 6)
 ax3.set_ylabel('latitude', fontsize = 6)
 ax3.coastlines(linewidth = 0.1)

 #time series subplot
 ax4.plot(EOF.year, nth_tsum, color = '#398CBF')
 ax4.plot(EOF.year.sel(year = i_time), nth_tsum.sel(year = i_time), 'o', color = '#BF3F3F')
 ax4.grid(axis = 'y', alpha = 0.3)
 ax4.set_yticks(ticks = [-4, 0, 4])
 ax4.set_yticklabels(labels = [-4, 0, 4], fontsize = 6)
 ax4.set_xticks(ticks = [1992, 2000, 2008, 2018])
 ax4.set_xticklabels(labels = [1992, 2000, 2008, 2018], fontsize = 6)
 ax4.set_xlabel('year', fontsize = 6)
 ax4.set_title('time series')

 #main colorbar
 cbar = fig.colorbar(cont, ax=ax1, aspect = 20, shrink = 0.9)
 cbar.ax.tick_params(labelsize = 4)
 cbar.set_label('ssh (m)', fontsize = 6)

 #total & residual color bar
 cbar2 = fig.colorbar(tot, ax = [ax2, ax3],location = 'bottom', orientation = 'horizontal', aspect = 30, pad = 0.2)
 cbar2.ax.tick_params(labelsize = 4)
 cbar2.set_label(label = 'ssh (m)', size = 6)

#interactive part
w = widgets.interact(
 update_plot, #call update plot function
 time = widgets.IntSlider(min = 1992, max = 2017, step = 1, value = 1992, description = 'Year'), #seting time slider
 intensity = widgets.IntSlider(min = 100, max = 400, step = 10, value = 100, description = 'Intensity %'),
 n = widgets.IntRangeSlider(min = 0, max = 24, step = 1, value = [0,1], description = 'PC Range'), #setting nth SVD component slider
 single = widgets.Checkbox(value = False, description = 'single PC'), #setting sinlge check box
)

In []:

