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1. Introduction

	 ENSO is one of the largest modes of variability in the climate system. It has profound im-
pacts on temperature and precipitation around the world. Because of these large impacts on glob-
al climate, ENSO is often cited as a source of climate predictability. While we know that ENSO as a 
whole is a source of predictability, we wanted to understand how the two modes of ENSO vary in 
their contribution to predictability on sub-decadal time scales. 

	 Much like the Lorenz 63 model, our climate system is chaotic. This means that it is extremely 
sensitive to initial conditions. Not only does the accuracy of the initial conditions impact predict-
ability, but the location of the initial conditions relative to the two attractor spaces impacts predict-
ability. ENSO is a mode of climate variability that has two modes, and these modes can be com-
pared to the attractor spaces in the Lorenz model. Much like this model, we hypothesize that initial 
conditions located near one of the attractor spaces offer superior predictability in comparison to 
initial conditions located in between attractor spaces. We further want to examine if one of these 
attractor spaces offers more predictability when compared to the other. This leads us to our re-
search question: 

How do ENSO regimes impact sea surface temperature and precipitation predictability on sub-
decadal time scales?

2. Datasets

	 In this project we used a variety of datasets including the DPLE-CESM1-LE dataset, Met 
Office data, GCPC data, and NOAA ENSO data. The DPLE - CESM1-LE dataset provides forecasts 
from CESM1 initialized every year in November.  This dataset contains 62 40-member ensembles, 
initialized every year in November from 1954-2015, and propagated forward for 122 months. Initial 
conditions were obtained from reanalysis-forced simulations of CESM. The Met Office Data is an 
observational  dataset containing ocean temperature and salinity profiles collected from 1900 to 
present. From this dataset, sea surface temperatures (SST) were obtained in order to compare it to 
the DPLE dataset containing SST. The GCPC (Global Precipitation Climatology Project) is a dataset 
in which a variety of observational data from 1979 to present have been merged to estimate global 
monthly rainfall on a 2.5° grid. Some of the sources of observations included in this dataset include 
rain gauge stations, satellites and soundings. One noted limitation is that satellite data is used to 
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estimate precipitation in regions over the ocean, which can result in a low bias during periods of 
low precipitation. Lastly, Niño 3.4 monthly temperature anomaly data was obtained from NOAA to 
select years of strong or neutral ENSO phases.

3. Methods

	 The first step of our analysis was to use NOAA Niño 3.4 anomaly data to select El Niño years 
and La Niña years by averaging the temperature anomaly in the Niño  3.4 region over December, 
January and February. Three months are typically used to generate the Niño index, and DJF was se-
lected due to the fact that ENSO typically peaks during this time period. The selected years are as 
follows:

El Niño years = [1982, 1986, 1991, 1997, 2009]

Neutral  years = [1980, 1981, 1985, 1989, 1990, 1992, 1993, 2001, 2003]

La Niña years  = [1984, 1988, 1998, 1999, 2007, 2010]

These years were restricted by the availability of observational datasets. The upper limit is 2011 
due to the 12 year forecast length, resulting in data needed through January of 2023. The lower 
limit was also determined by the availability of observations, with the GCPC dataset beginning in 
1979. For a plot of annual Niño indices and selected years see the appendix.

	 Once these years were identified, we then proceeded to calculate the anomaly correlation 
coefficient (ACC) as a metric of predictive skill between the DPLE forecasts and the observational 
datasets. We computed the ACC by first detrending the datasets with respect to time, computing 
climatology, and then subtracting these values from the detrended data. This generated detrended 
anomaly data for our respective variables. The next step in analysis involved regridding the DPLE 
data to match the coarser spatial resolution of the observational datasets. We then calculated the 
correlation coefficient of these anomalies over 1-5, 3-7 and 5-9 years out from the DPLE initializa-
tion year and produced maps that show the spatial relationship of the ACC score over these three 
ranges of years. The final step in our computational process is to average these maps over the El 
Niño, La Niña and neutral year categories so that we may draw conclusions about the predictability 
of different ENSO regimes. Additionally, further analysis of precipitation was conducted. For the 
methods and results of this analysis see the appendix.
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4. Results

4.1 Precipitaion

	 We don’t expect to have very high skill in predicting precipitation on decadal timescales 
because of a number of factors. These factors include the variety of processes that are involved 
in modeling precipitation that all introduce error growth, in addition to threshold based nature 
of these processes, and the lack of spatial resolution needed to accurately model subgrid scale 
processes. However, despite these factors that limit the predictability of precipitation on decadal 
timescales,one region that demonstrates significant predictive skill is the Equatorial Pacific. The 
increased predictive skill over this region makes sense as this is the region most directly affected 
by ENSO. The nature of ENSO is variability of sea surface temperatures in this region. Additionally, 
rates of deep convection are tightly associated with SST. These spatial and physical relationships 
may explain why this region offers more predictive skill than anywhere else.

	 For precipitation, forecasts initialized in both La Niña and El Niño offered superior predictive 
skill when compared to forecasts initialized in neutral years. Forecasts initialized during strong El 
Niño and La Niña years both demonstrated similar trends in relationship to forecast length. As the 
length of the forecast increased, their predictive skill gradually tapered off. In contrast, forecasts 
initialized in neutral years had a consistent level of low predictive skill across all of the 3 ranges of 
years. 
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Figure 1. ACC score calculated for DPLE precipitation and GCPC precipitation data. Rows are separated into El 
Niño, La Niña and Neutral initialization years. Columns are separated by range in years following the initialization 
year over which ACC was calculated.
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4.2 Sea Surface Temperature (SST)

	 The plots below show the results for the anomaly correlation coefficient (ACC) calculated 
and plotted spatially in order to see where in the world the ACC of SST is the greatest. These results 
will allow us to determine where the CESM1-DPLE model has the highest predictive skill. A notable 
result is specifically in the neutral years in which the ENSO 3.4 area specifically has a dramatic de-
crease in the ACC as the forecast length increases. This result also occurs in the ENSO regimes, but 
on a much smaller scale than the magnitude in the neutral years. 
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Figure 2.  Bar plot showing the number of grid cells who had 
an ACC score calculated for DPLE precipitation and GCPC 
precipitation data above 0.15. Initialization ENSO regime is 
indicated by the color of the bars (shown in legend). Year 
ranges indicate the time period after the initialization year of 
the DPLE forecast.
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Figure 3. ACC score calculated for DPLE SST and Met Office SST data. Rows are separated into El Niño, La Niña 
and Neutral initialization years. Columns are separated by range in years following the initialization year over 
which ACC was calculated.
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	 For SST, the neutral years offered the greatest predictive skill in the first forecast of years 1-5 
while La Niña predictive skill dominated the other forecast year ranges. These results differ from 
what we would normally expect since La Niña proved to have a higher predictive skill than El Niño 
in the later years. Between these two regimes, it was not predicted for La Niña to have a greater 
predictive skill than El Niño. 

5. Discussion

	 For SST, the forecasts initialized for the neutral years, specifically for the 1-5 year forecast pe-
riod, offered a much higher predictive skill than the ENSO regimes. However, with the increase in 
the forecast length comes a decrease in predictive skill with the neutral years, but La Niña increases 
in predictive skill when the forecast length is increased to the 3-7 year range. Once the forecast 
is propagated forward to the 5-9 year range, the predictive skill in the La Niña regime decreas-
es. With the El Niño regime, the predictive skill is essentially the opposite of the La Niña regime 
where the predictive skill decreases going into the 3-7 year forecast but then increases going into 
the 5-9 year forecast period. Overall, the El Niño predictive skill was either almost the same as the 
La Niña predictive skill or smaller, which was unexpected. It is possible that this could be attribut-
ed to a cold temperature bias that is possible in the CESM1-DPLE model. In previous work, it has 
been found that there is a possible cold tongue bias within the model as concluded by X. Wu et al. 
Though this is not proven, it can answer how the predictive skill of La Niña is greater than the pre-
dictive skill of El Niño. 

	 Results from the analysis of DPLE’s precipitation predictive skill indicated that the hypothesis 
that initial conditions located within one ENSO regime offer more  predictability than initial condi-
tions located between regimes is correct.  Additionally, initial conditions located within the El Niño 
regime offer more precipitation predictability than those located within the La Niña regime. How-
ever, it is still unclear where this source of predictability originates.
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Figure 4.  Bar plot showing the number of grid cells who had 
an ACC score calculated for DPLE SST and Met Office SST 
data above 0.15. Initialization ENSO regime is indicated by 
the color of the bars (shown in legend). Year ranges indicate 
the time period after the initialization year of the DPLE 
forecast.
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	 The difference between the predictive skill of SST and the predictive skill of precipitation 
was to be expected, given that the predictive skill of SST was greater overall than the predictive 
skill of precipitation. We expected this to be true as it is more difficult to predict precipitation over-
all since there are several different ways that precipitation can be affected by outside forcings. An-
other contributing factor to the observed discrepancy in predictive skill between precipitation and 
SST is the spatial and temporal scale of the dynamics that drive changes over time. Processes that 
affect SST include large scale wind patterns and large scale ocean circulation, in addition to many 
smaller scale processes as well. However, both of these types of large scale dynamics operate on 
longer timescales and  are more accurately modeled at the resolution provided by the DPLE mod-
el. In contrast, precipitation is predominantly affected by a multitude of  subgrid scale processes, in 
addition to being influenced by the same large-scale dynamics as SST. However, the main contrast 
is that the physical mechanisms that facilitate precipitation, such as convection, happen on much 
shorter  timescales, influencing their difficulty to predict.

	 Further research exploring the observed gaps of predictive skill between strong ENSO 
phases and neutral years is required to understand the origin of their respective increases or 
decreases in predictive skill. One example of further research in the area is to conduct the same 
analysis technique using historic CESM-LE runs. This would highlight the benefit associated with 
initializations in the respective ENSO regimes or neutral years. Another area that requires further 
exploration is to quantify the upper limit of predictability for SST and precipitation. This could be 
analyzed through the analysis of CESM-LE’s skill in predicting itself. Additionally, conducting this 
same type of analysis on the DPLE dataset would help quantify the upper limit of predictability  
with respect to initialization years that coincide with strong ENSO regimes. 

6. Summary

	 ENSO has a variety of impacts on climate around the globe due to its large variability, but 
can also contain a high level of predictive skill depending on what variable you are attempting to 
forecast. We particularly look at the two modes of variability of ENSO, El Niño and La Niña, compar-
ing the predictive skill as well as analyzing exactly how these two modes affect the global climate. 
The goal of this project was to quantify the impacts of the ENSO regimes on predictive skill on 
precipitation and sea surface temperature on sub-decadal time scales. This was achieved by first 
gathering the years in which the ENSO regimes had higher peaks (above a certain threshold). With 
these years acting as initialization years, the anomaly correlation coefficient (ACC) was calculated 
between observational data (datasets differ between variables) and the DPLE model. The ACC was 
calculated between those two datasets and then forecasted for 1-5 years, 3-7 years, and 5-9 years, 
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then plotted spatially in order to visualize the difference in ACC across the globe. 

	 The results have shown us very different things between SST and precipitation, overall there 
is a higher predictive skill with SST compared to precipitation. With precipitation, the predictive 
skill for the different ENSO regimes and the neutral years were as expected with El Niño having 
the highest predictive skill compared to La Niña and the neutral years. Along with that result, it was 
also expected that the predictive skill decreased as the forecast length increased within the range 
of years that the ACC was calculated for. However, with SST, what we expected from the ACC calcu-
lations was not what the results showed us. For the first forecast of 1-5 years, the neutral years have 
the highest predictive skill while, as the forecast length increases, the La Niña regime has the high-
est predictive skill. While some of the results were as expected and some were not, we are still able 
to show the impact ENSO has on the global climate from the two variables tested. Further analysis 
is required in order to show the origin of the observed differences in DPLE predictive skill across 
the ENSO regimes, as well as the origin for the higher predictive skill of La Niña when it comes to 
sea surface temperature. 
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7. Appendix

7.1 ENSO Year Selection

The first step of our analysis was to use NOAA Niño 3.4 anomaly data to select El Niño years and La 
Niña years by averaging the temperature anomaly in the Niño  3.4 region over December, January 
and February. Three months are typically used to generate the Niño index, and DJF was selected 
due to the fact that ENSO typically peaks during this time period. The selected years are as follows:

El Niño years = [1982, 1986, 1991, 1997, 2009]

Neutral  years = [1980, 1981, 1985, 1989, 1990, 1992, 1993, 2001, 2003]

La Niña years  = [1984, 1988, 1998, 1999, 2007, 2010]

These years were restricted by the availability of observational datasets. The upper limit is 2011 
due to the 12 year forecast length, resulting in data needed through January of 2023. The lower 
limit was also determined by the availability of observations, with the GCPC dataset beginning in 
1979. The plot of annual Niño indices and selected years is below.

7.2 Persistence Methods

Similar methods to the analysis applied to the DPLE to observations ACC core generation were 
employed. The primary distinction is the use of the first month of data, December of the initializa-
tion year, as the data for the following 122 simulation months. Climatology was calculated from the 
original DPLE dataset and subtracted from the persistent values to general anomalies. This data 
was then regridded to match the spatial resolution of observations, and correlated over the same 
1-5, 3-7 and 5-9 year ranges after initialization.
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Figure 5. This graph shows the DJF index for each year. Circles indicate years that were selected for their respective ENSO regime. El 
Niño and La Niña were selected using 1.0 and -1.0 index values, respectively. Neutral years were selected using the index range -0.5 
to 0.5. 
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Figure 6. ACC score calculated for Persistence and GCPC precipitation data. Rows are separated into El Niño, 
La Niña and Neutral initialization years. Columns are separated by range in years following the initialization year 
over which ACC was calculated.

7.3 Persistent Results

The results of persistence indicated that the DPLE dataset does a remarkably great job of predict-
ing precipitation.  By contrast, the persistence model had very low skill scores, with the maximum 
skill score ranging across all three year ranges was less than 0.2, with around 10 grid cells demon-
strating significant ACC scores. Additionally, very few of these significant ACC scores coincided 
with regions of positive ACC values.
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