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1. Introduction

ENSO is one of the largest modes of variability in the climate system. It has profound im-
pacts on temperature and precipitation around the world. Because of these large impacts on glob-
al climate, ENSO is often cited as a source of climate predictability. While we know that ENSO as a
whole is a source of predictability, we wanted to understand how the two modes of ENSO vary in

their contribution to predictability on sub-decadal time scales.

Much like the Lorenz 63 model, our climate system is chaotic. This means that it is extremely
sensitive to initial conditions. Not only does the accuracy of the initial conditions impact predict-
ability, but the location of the initial conditions relative to the two attractor spaces impacts predict-
ability. ENSO is a mode of climate variability that has two modes, and these modes can be com-
pared to the attractor spaces in the Lorenz model. Much like this model, we hypothesize that initial
conditions located near one of the attractor spaces offer superior predictability in comparison to
initial conditions located in between attractor spaces. We further want to examine if one of these
attractor spaces offers more predictability when compared to the other. This leads us to our re-

search question:

How do ENSO regimes impact sea surface temperature and precipitation predictability on sub-

decadal time scales?

2. Datasets

In this project we used a variety of datasets including the DPLE-CESM1-LE dataset, Met
Office data, GCPC data, and NOAA ENSO data. The DPLE - CESM1-LE dataset provides forecasts
from CESM1 initialized every year in November. This dataset contains 62 40-member ensembles,
initialized every year in November from 1954-2015, and propagated forward for 122 months. Initial
conditions were obtained from reanalysis-forced simulations of CESM. The Met Office Data is an
observational dataset containing ocean temperature and salinity profiles collected from 1900 to
present. From this dataset, sea surface temperatures (SST) were obtained in order to compare it to
the DPLE dataset containing SST. The GCPC (Global Precipitation Climatology Project) is a dataset
in which a variety of observational data from 1979 to present have been merged to estimate global
monthly rainfall on a 2.5° grid. Some of the sources of observations included in this dataset include

rain gauge stations, satellites and soundings. One noted limitation is that satellite data is used to
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estimate precipitation in regions over the ocean, which can result in a low bias during periods of
low precipitation. Lastly, Niflo 3.4 monthly temperature anomaly data was obtained from NOAA to

select years of strong or neutral ENSO phases.

3. Methods

The first step of our analysis was to use NOAA Nifo 3.4 anomaly data to select El Nifio years
and La Nifia years by averaging the temperature anomaly in the Nifio 3.4 region over December,
January and February. Three months are typically used to generate the Nifio index, and DJF was se-
lected due to the fact that ENSO typically peaks during this time period. The selected years are as

follows:
El Nifio years = [1982, 1986, 1991, 1997, 2009]
Neutral years =[1980, 1981, 1985, 1989, 1990, 1992, 1993, 2001, 2003]
La Nifia years =[1984, 1988, 1998, 1999, 2007, 2010]

These years were restricted by the availability of observational datasets. The upper limitis 2011
due to the 12 year forecast length, resulting in data needed through January of 2023. The lower
limit was also determined by the availability of observations, with the GCPC dataset beginning in

1979. For a plot of annual Nifio indices and selected years see the appendix.

Once these years were identified, we then proceeded to calculate the anomaly correlation
coefficient (ACC) as a metric of predictive skill between the DPLE forecasts and the observational
datasets. We computed the ACC by first detrending the datasets with respect to time, computing
climatology, and then subtracting these values from the detrended data. This generated detrended
anomaly data for our respective variables. The next step in analysis involved regridding the DPLE
data to match the coarser spatial resolution of the observational datasets. We then calculated the
correlation coefficient of these anomalies over 1-5, 3-7 and 5-9 years out from the DPLE initializa-
tion year and produced maps that show the spatial relationship of the ACC score over these three
ranges of years. The final step in our computational process is to average these maps over the El
Nifo, La Nifa and neutral year categories so that we may draw conclusions about the predictability
of different ENSO regimes. Additionally, further analysis of precipitation was conducted. For the

methods and results of this analysis see the appendix.



4. Results
4.1 Precipitaion

We don't expect to have very high skill in predicting precipitation on decadal timescales
because of a number of factors. These factors include the variety of processes that are involved
in modeling precipitation that all introduce error growth, in addition to threshold based nature
of these processes, and the lack of spatial resolution needed to accurately model subgrid scale
processes. However, despite these factors that limit the predictability of precipitation on decadal
timescales,one region that demonstrates significant predictive skill is the Equatorial Pacific. The
increased predictive skill over this region makes sense as this is the region most directly affected
by ENSO. The nature of ENSO is variability of sea surface temperatures in this region. Additionally,
rates of deep convection are tightly associated with SST. These spatial and physical relationships

may explain why this region offers more predictive skill than anywhere else.
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Figure 1. ACC score calculated for DPLE precipitation and GCPC precipitation data. Rows are separated into El
Nifio, La Nifia and Neutral initialization years. Columns are separated by range in years following the initialization
year over which ACC was calculated.

For precipitation, forecasts initialized in both La Nifia and El Nifio offered superior predictive
skill when compared to forecasts initialized in neutral years. Forecasts initialized during strong El
Nifo and La Nifa years both demonstrated similar trends in relationship to forecast length. As the
length of the forecast increased, their predictive skill gradually tapered off. In contrast, forecasts
initialized in neutral years had a consistent level of low predictive skill across all of the 3 ranges of

years.
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4.2 Sea Surface Temperature (SST)

The plots below show the results for the anomaly correlation coefficient (ACC) calculated
and plotted spatially in order to see where in the world the ACC of SST is the greatest. These results
will allow us to determine where the CESM1-DPLE model has the highest predictive skill. A notable
result is specifically in the neutral years in which the ENSO 3.4 area specifically has a dramatic de-
crease in the ACC as the forecast length increases. This result also occurs in the ENSO regimes, but

on a much smaller scale than the magnitude in the neutral years.
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Figure 3. ACC score calculated for DPLE SST and Met Office SST data. Rows are separated into El Nifio, La Nina
and Neutral initialization years. Columns are separated by range in years following the initialization year over
which ACC was calculated.
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For SST, the neutral years offered the greatest predictive skill in the first forecast of years 1-5
while La Nifia predictive skill dominated the other forecast year ranges. These results differ from
what we would normally expect since La Nina proved to have a higher predictive skill than El Nifio
in the later years. Between these two regimes, it was not predicted for La Nifia to have a greater

predictive skill than El Nifo.

5. Discussion

For SST, the forecasts initialized for the neutral years, specifically for the 1-5 year forecast pe-
riod, offered a much higher predictive skill than the ENSO regimes. However, with the increase in
the forecast length comes a decrease in predictive skill with the neutral years, but La Nifia increases
in predictive skill when the forecast length is increased to the 3-7 year range. Once the forecast
is propagated forward to the 5-9 year range, the predictive skill in the La Nifia regime decreas-
es. With the El Nifio regime, the predictive skill is essentially the opposite of the La Nina regime
where the predictive skill decreases going into the 3-7 year forecast but then increases going into
the 5-9 year forecast period. Overall, the El Nifio predictive skill was either almost the same as the
La Nifa predictive skill or smaller, which was unexpected. It is possible that this could be attribut-
ed to a cold temperature bias that is possible in the CESM1-DPLE model. In previous work, it has
been found that there is a possible cold tongue bias within the model as concluded by X. Wu et al.
Though this is not proven, it can answer how the predictive skill of La Nifia is greater than the pre-
dictive skill of El Nifo.

Results from the analysis of DPLE's precipitation predictive skill indicated that the hypothesis
that initial conditions located within one ENSO regime offer more predictability than initial condi-
tions located between regimes is correct. Additionally, initial conditions located within the El Nifio
regime offer more precipitation predictability than those located within the La Nifia regime. How-

ever, it is still unclear where this source of predictability originates.



The difference between the predictive skill of SST and the predictive skill of precipitation
was to be expected, given that the predictive skill of SST was greater overall than the predictive
skill of precipitation. We expected this to be true as it is more difficult to predict precipitation over-
all since there are several different ways that precipitation can be affected by outside forcings. An-
other contributing factor to the observed discrepancy in predictive skill between precipitation and
SST is the spatial and temporal scale of the dynamics that drive changes over time. Processes that
affect SST include large scale wind patterns and large scale ocean circulation, in addition to many
smaller scale processes as well. However, both of these types of large scale dynamics operate on
longer timescales and are more accurately modeled at the resolution provided by the DPLE mod-
el. In contrast, precipitation is predominantly affected by a multitude of subgrid scale processes, in
addition to being influenced by the same large-scale dynamics as SST. However, the main contrast
is that the physical mechanisms that facilitate precipitation, such as convection, happen on much

shorter timescales, influencing their difficulty to predict.

Further research exploring the observed gaps of predictive skill between strong ENSO
phases and neutral years is required to understand the origin of their respective increases or
decreases in predictive skill. One example of further research in the area is to conduct the same
analysis technique using historic CESM-LE runs. This would highlight the benefit associated with
initializations in the respective ENSO regimes or neutral years. Another area that requires further
exploration is to quantify the upper limit of predictability for SST and precipitation. This could be
analyzed through the analysis of CESM-LE's skill in predicting itself. Additionally, conducting this
same type of analysis on the DPLE dataset would help quantify the upper limit of predictability

with respect to initialization years that coincide with strong ENSO regimes.

6. Summary

ENSO has a variety of impacts on climate around the globe due to its large variability, but
can also contain a high level of predictive skill depending on what variable you are attempting to
forecast. We particularly look at the two modes of variability of ENSO, El Nifio and La Nifia, compar-
ing the predictive skill as well as analyzing exactly how these two modes affect the global climate.
The goal of this project was to quantify the impacts of the ENSO regimes on predictive skill on
precipitation and sea surface temperature on sub-decadal time scales. This was achieved by first
gathering the years in which the ENSO regimes had higher peaks (above a certain threshold). With
these years acting as initialization years, the anomaly correlation coefficient (ACC) was calculated
between observational data (datasets differ between variables) and the DPLE model. The ACC was

calculated between those two datasets and then forecasted for 1-5 years, 3-7 years, and 5-9 years,



then plotted spatially in order to visualize the difference in ACC across the globe.

The results have shown us very different things between SST and precipitation, overall there
is a higher predictive skill with SST compared to precipitation. With precipitation, the predictive
skill for the different ENSO regimes and the neutral years were as expected with El Nifo having
the highest predictive skill compared to La Nifia and the neutral years. Along with that result, it was
also expected that the predictive skill decreased as the forecast length increased within the range
of years that the ACC was calculated for. However, with SST, what we expected from the ACC calcu-
lations was not what the results showed us. For the first forecast of 1-5 years, the neutral years have
the highest predictive skill while, as the forecast length increases, the La Nifia regime has the high-
est predictive skill. While some of the results were as expected and some were not, we are still able
to show the impact ENSO has on the global climate from the two variables tested. Further analysis
is required in order to show the origin of the observed differences in DPLE predictive skill across
the ENSO regimes, as well as the origin for the higher predictive skill of La Nifia when it comes to

sea surface temperature.



7. Appendix

7.1 ENSO Year Selection

The first step of our analysis was to use NOAA Nifio 3.4 anomaly data to select El Nifio years and La

Nifia years by averaging the temperature anomaly in the Nifio 3.4 region over December, January

and February. Three months are typically used to generate the Nifo index, and DJF was selected

due to the fact that ENSO typically peaks during this time period. The selected years are as follows:

El Nifio years =[1982, 1986, 1991, 1997, 2009]
Neutral years =[1980, 1981, 1985, 1989, 1990, 1992, 1993, 2001, 2003]

La Nifa years =[1984, 1988, 1998, 1999, 2007, 2010]

These years were restricted by the availability of observational datasets. The upper limitis 2011

due to the 12 year forecast length, resulting in data needed through January of 2023. The lower

limit was also determined by the availability of observations, with the GCPC dataset beginning in

1979. The plot of annual Nifo indices and selected years is below.
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Figure 5. This graph shows the DJF index for each year. Circles indicate years that were selected for their respective ENSO regime. El
Nifio and La Nifia were selected using 1.0 and -1.0 index values, respectively. Neutral years were selected using the index range -0.5
to 0.5.

7.2 Persistence Methods

Similar methods to the analysis applied to the DPLE to observations ACC core generation were

employed. The primary distinction is the use of the first month of data, December of the initializa-

tion year, as the data for the following 122 simulation months. Climatology was calculated from the

original DPLE dataset and subtracted from the persistent values to general anomalies. This data

was then regridded to match the spatial resolution of observations, and correlated over the same

1-5, 3-7 and 5-9 year ranges after initialization.



7.3 Persistent Results

The results of persistence indicated that the DPLE dataset does a remarkably great job of predict-
ing precipitation. By contrast, the persistence model had very low skill scores, with the maximum

skill score ranging across all three year ranges was less than 0.2, with around 10 grid cells demon-
strating significant ACC scores. Additionally, very few of these significant ACC scores coincided

with regions of positive ACC values.
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Figure 6. ACC score calculated for Persistence and GCPC precipitation data. Rows are separated into El Nifio,
La Nifa and Neutral initialization years. Columns are separated by range in years following the initialization year
over which ACC was calculated.
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